#include #include #include #include "blake3.h" #include "blake3_impl.h" INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8], uint8_t flags) { memcpy(self->cv, key, BLAKE3_KEY_LEN); self->chunk_counter = 0; memset(self->buf, 0, BLAKE3_BLOCK_LEN); self->buf_len = 0; self->blocks_compressed = 0; self->flags = flags; } INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8], uint64_t chunk_counter) { memcpy(self->cv, key, BLAKE3_KEY_LEN); self->chunk_counter = chunk_counter; self->blocks_compressed = 0; memset(self->buf, 0, BLAKE3_BLOCK_LEN); self->buf_len = 0; } INLINE size_t chunk_state_len(const blake3_chunk_state *self) { return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) + ((size_t)self->buf_len); } INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self, const uint8_t *input, size_t input_len) { size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len); if (take > input_len) { take = input_len; } uint8_t *dest = self->buf + ((size_t)self->buf_len); memcpy(dest, input, take); self->buf_len += (uint8_t)take; return take; } INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) { if (self->blocks_compressed == 0) { return CHUNK_START; } else { return 0; } } typedef struct { uint32_t input_cv[8]; uint64_t counter; uint8_t block[BLAKE3_BLOCK_LEN]; uint8_t block_len; uint8_t flags; } output_t; INLINE output_t make_output(const uint32_t input_cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags) { output_t ret; memcpy(ret.input_cv, input_cv, 32); memcpy(ret.block, block, BLAKE3_BLOCK_LEN); ret.block_len = block_len; ret.counter = counter; ret.flags = flags; return ret; } // Chaining values within a given chunk (specifically the compress_in_place // interface) are represented as words. This avoids unnecessary bytes<->words // conversion overhead in the portable implementation. However, the hash_many // interface handles both user input and parent node blocks, so it accepts // bytes. For that reason, chaining values in the CV stack are represented as // bytes. INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) { uint32_t cv_words[8]; memcpy(cv_words, self->input_cv, 32); blake3_compress_in_place(cv_words, self->block, self->block_len, self->counter, self->flags); memcpy(cv, cv_words, 32); } INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out, size_t out_len) { uint64_t output_block_counter = seek / 64; size_t offset_within_block = seek % 64; uint8_t wide_buf[64]; while (out_len > 0) { blake3_compress_xof(self->input_cv, self->block, self->block_len, output_block_counter, self->flags | ROOT, wide_buf); size_t available_bytes = 64 - offset_within_block; size_t memcpy_len; if (out_len > available_bytes) { memcpy_len = available_bytes; } else { memcpy_len = out_len; } memcpy(out, wide_buf + offset_within_block, memcpy_len); out += memcpy_len; out_len -= memcpy_len; output_block_counter += 1; offset_within_block = 0; } } INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input, size_t input_len) { if (self->buf_len > 0) { size_t take = chunk_state_fill_buf(self, input, input_len); input += take; input_len -= take; if (input_len > 0) { blake3_compress_in_place( self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter, self->flags | chunk_state_maybe_start_flag(self)); self->blocks_compressed += 1; self->buf_len = 0; memset(self->buf, 0, BLAKE3_BLOCK_LEN); } } while (input_len > BLAKE3_BLOCK_LEN) { blake3_compress_in_place(self->cv, input, BLAKE3_BLOCK_LEN, self->chunk_counter, self->flags | chunk_state_maybe_start_flag(self)); self->blocks_compressed += 1; input += BLAKE3_BLOCK_LEN; input_len -= BLAKE3_BLOCK_LEN; } size_t take = chunk_state_fill_buf(self, input, input_len); input += take; input_len -= take; } INLINE output_t chunk_state_output(const blake3_chunk_state *self) { uint8_t block_flags = self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END; return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter, block_flags); } INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], const uint32_t key[8], uint8_t flags) { return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT); } // Given some input larger than one chunk, return the number of bytes that // should go in the left subtree. This is the largest power-of-2 number of // chunks that leaves at least 1 byte for the right subtree. INLINE size_t left_len(size_t content_len) { // Subtract 1 to reserve at least one byte for the right side. content_len // should always be greater than BLAKE3_CHUNK_LEN. size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN; return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN; } // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time // on a single thread. Write out the chunk chaining values and return the // number of chunks hashed. These chunks are never the root and never empty; // those cases use a different codepath. INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t *out) { #if defined(BLAKE3_TESTING) assert(0 < input_len); assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN); #endif const uint8_t *chunks_array[MAX_SIMD_DEGREE]; size_t input_position = 0; size_t chunks_array_len = 0; while (input_len - input_position >= BLAKE3_CHUNK_LEN) { chunks_array[chunks_array_len] = &input[input_position]; input_position += BLAKE3_CHUNK_LEN; chunks_array_len += 1; } blake3_hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter, true, flags, CHUNK_START, CHUNK_END, out); // Hash the remaining partial chunk, if there is one. Note that the empty // chunk (meaning the empty message) is a different codepath. if (input_len > input_position) { uint64_t counter = chunk_counter + (uint64_t)chunks_array_len; blake3_chunk_state chunk_state; chunk_state_init(&chunk_state, key, flags); chunk_state.chunk_counter = counter; chunk_state_update(&chunk_state, &input[input_position], input_len - input_position); output_t output = chunk_state_output(&chunk_state); output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]); return chunks_array_len + 1; } else { return chunks_array_len; } } // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time // on a single thread. Write out the parent chaining values and return the // number of parents hashed. (If there's an odd input chaining value left over, // return it as an additional output.) These parents are never the root and // never empty; those cases use a different codepath. INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values, size_t num_chaining_values, const uint32_t key[8], uint8_t flags, uint8_t *out) { #if defined(BLAKE3_TESTING) assert(2 <= num_chaining_values); assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2); #endif const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2]; size_t parents_array_len = 0; while (num_chaining_values - (2 * parents_array_len) >= 2) { parents_array[parents_array_len] = &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN]; parents_array_len += 1; } blake3_hash_many(parents_array, parents_array_len, 1, key, 0, // Parents always use counter 0. false, flags | PARENT, 0, // Parents have no start flags. 0, // Parents have no end flags. out); // If there's an odd child left over, it becomes an output. if (num_chaining_values > 2 * parents_array_len) { memcpy(&out[parents_array_len * BLAKE3_OUT_LEN], &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN], BLAKE3_OUT_LEN); return parents_array_len + 1; } else { return parents_array_len; } } // The wide helper function returns (writes out) an array of chaining values // and returns the length of that array. The number of chaining values returned // is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, // if the input is shorter than that many chunks. The reason for maintaining a // wide array of chaining values going back up the tree, is to allow the // implementation to hash as many parents in parallel as possible. // // As a special case when the SIMD degree is 1, this function will still return // at least 2 outputs. This guarantees that this function doesn't perform the // root compression. (If it did, it would use the wrong flags, and also we // wouldn't be able to implement exendable ouput.) Note that this function is // not used when the whole input is only 1 chunk long; that's a different // codepath. // // Why not just have the caller split the input on the first update(), instead // of implementing this special rule? Because we don't want to limit SIMD or // multi-threading parallelism for that update(). static size_t blake3_compress_subtree_wide(const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t *out) { // Note that the single chunk case does *not* bump the SIMD degree up to 2 // when it is 1. If this implementation adds multi-threading in the future, // this gives us the option of multi-threading even the 2-chunk case, which // can help performance on smaller platforms. if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) { return compress_chunks_parallel(input, input_len, key, chunk_counter, flags, out); } // With more than simd_degree chunks, we need to recurse. Start by dividing // the input into left and right subtrees. (Note that this is only optimal // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree // of 3 or something, we'll need a more complicated strategy.) size_t left_input_len = left_len(input_len); size_t right_input_len = input_len - left_input_len; const uint8_t *right_input = &input[left_input_len]; uint64_t right_chunk_counter = chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN); // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to // account for the special case of returning 2 outputs when the SIMD degree // is 1. uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; size_t degree = blake3_simd_degree(); if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) { // The special case: We always use a degree of at least two, to make // sure there are two outputs. Except, as noted above, at the chunk // level, where we allow degree=1. (Note that the 1-chunk-input case is // a different codepath.) degree = 2; } uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN]; // Recurse! If this implementation adds multi-threading support in the // future, this is where it will go. size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key, chunk_counter, flags, cv_array); size_t right_n = blake3_compress_subtree_wide( right_input, right_input_len, key, right_chunk_counter, flags, right_cvs); // The special case again. If simd_degree=1, then we'll have left_n=1 and // right_n=1. Rather than compressing them into a single output, return // them directly, to make sure we always have at least two outputs. if (left_n == 1) { memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); return 2; } // Otherwise, do one layer of parent node compression. size_t num_chaining_values = left_n + right_n; return compress_parents_parallel(cv_array, num_chaining_values, key, flags, out); } // Hash a subtree with compress_subtree_wide(), and then condense the resulting // list of chaining values down to a single parent node. Don't compress that // last parent node, however. Instead, return its message bytes (the // concatenated chaining values of its children). This is necessary when the // first call to update() supplies a complete subtree, because the topmost // parent node of that subtree could end up being the root. It's also necessary // for extended output in the general case. // // As with compress_subtree_wide(), this function is not used on inputs of 1 // chunk or less. That's a different codepath. INLINE void compress_subtree_to_parent_node( const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) { #if defined(BLAKE3_TESTING) assert(input_len > BLAKE3_CHUNK_LEN); #endif uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key, chunk_counter, flags, cv_array); // If MAX_SIMD_DEGREE is greater than 2 and there's enough input, // compress_subtree_wide() returns more than 2 chaining values. Condense // them into 2 by forming parent nodes repeatedly. uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2]; while (num_cvs > 2) { num_cvs = compress_parents_parallel(cv_array, num_cvs, key, flags, out_array); memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN); } memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); } INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8], uint8_t flags) { memcpy(self->key, key, BLAKE3_KEY_LEN); chunk_state_init(&self->chunk, key, flags); self->cv_stack_len = 0; } void blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, IV, 0); } void blake3_hasher_init_keyed(blake3_hasher *self, const uint8_t key[BLAKE3_KEY_LEN]) { uint32_t key_words[8]; load_key_words(key, key_words); hasher_init_base(self, key_words, KEYED_HASH); } void blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) { blake3_hasher context_hasher; hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT); blake3_hasher_update(&context_hasher, context, strlen(context)); uint8_t context_key[BLAKE3_KEY_LEN]; blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN); uint32_t context_key_words[8]; load_key_words(context_key, context_key_words); hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL); } // As described in hasher_push_cv() below, we do "lazy merging", delaying // merges until right before the next CV is about to be added. This is // different from the reference implementation. Another difference is that we // aren't always merging 1 chunk at a time. Instead, each CV might represent // any power-of-two number of chunks, as long as the smaller-above-larger stack // order is maintained. Instead of the "count the trailing 0-bits" algorithm // described in the spec, we use a "count the total number of 1-bits" variant // that doesn't require us to retain the subtree size of the CV on top of the // stack. The principle is the same: each CV that should remain in the stack is // represented by a 1-bit in the total number of chunks (or bytes) so far. INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) { size_t post_merge_stack_len = (size_t)popcnt(total_len); while (self->cv_stack_len > post_merge_stack_len) { uint8_t *parent_node = &self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN]; output_t output = parent_output(parent_node, self->key, self->chunk.flags); output_chaining_value(&output, parent_node); self->cv_stack_len -= 1; } } // In reference_impl.rs, we merge the new CV with existing CVs from the stack // before pushing it. We can do that because we know more input is coming, so // we know none of the merges are root. // // This setting is different. We want to feed as much input as possible to // compress_subtree_wide(), without setting aside anything for the chunk_state. // If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once // as a single subtree, if at all possible. // // This leads to two problems: // 1) This 64 KiB input might be the only call that ever gets made to update. // In this case, the root node of the 64 KiB subtree would be the root node // of the whole tree, and it would need to be ROOT finalized. We can't // compress it until we know. // 2) This 64 KiB input might complete a larger tree, whose root node is // similarly going to be the the root of the whole tree. For example, maybe // we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the // node at the root of the 256 KiB subtree until we know how to finalize it. // // The second problem is solved with "lazy merging". That is, when we're about // to add a CV to the stack, we don't merge it with anything first, as the // reference impl does. Instead we do merges using the *previous* CV that was // added, which is sitting on top of the stack, and we put the new CV // (unmerged) on top of the stack afterwards. This guarantees that we never // merge the root node until finalize(). // // Solving the first problem requires an additional tool, // compress_subtree_to_parent_node(). That function always returns the top // *two* chaining values of the subtree it's compressing. We then do lazy // merging with each of them separately, so that the second CV will always // remain unmerged. (That also helps us support extendable output when we're // hashing an input all-at-once.) INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN], uint64_t chunk_counter) { hasher_merge_cv_stack(self, chunk_counter); memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv, BLAKE3_OUT_LEN); self->cv_stack_len += 1; } void blake3_hasher_update(blake3_hasher *self, const void *input, size_t input_len) { // Explicitly checking for zero avoids causing UB by passing a null pointer // to memcpy. This comes up in practice with things like: // std::vector v; // blake3_hasher_update(&hasher, v.data(), v.size()); if (input_len == 0) { return; } const uint8_t *input_bytes = (const uint8_t *)input; // If we have some partial chunk bytes in the internal chunk_state, we need // to finish that chunk first. if (chunk_state_len(&self->chunk) > 0) { size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk); if (take > input_len) { take = input_len; } chunk_state_update(&self->chunk, input_bytes, take); input_bytes += take; input_len -= take; // If we've filled the current chunk and there's more coming, finalize this // chunk and proceed. In this case we know it's not the root. if (input_len > 0) { output_t output = chunk_state_output(&self->chunk); uint8_t chunk_cv[32]; output_chaining_value(&output, chunk_cv); hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter); chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1); } else { return; } } // Now the chunk_state is clear, and we have more input. If there's more than // a single chunk (so, definitely not the root chunk), hash the largest whole // subtree we can, with the full benefits of SIMD (and maybe in the future, // multi-threading) parallelism. Two restrictions: // - The subtree has to be a power-of-2 number of chunks. Only subtrees along // the right edge can be incomplete, and we don't know where the right edge // is going to be until we get to finalize(). // - The subtree must evenly divide the total number of chunks up until this // point (if total is not 0). If the current incomplete subtree is only // waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have // to complete the current subtree first. // Because we might need to break up the input to form powers of 2, or to // evenly divide what we already have, this part runs in a loop. while (input_len > BLAKE3_CHUNK_LEN) { size_t subtree_len = round_down_to_power_of_2(input_len); uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN; // Shrink the subtree_len until it evenly divides the count so far. We know // that subtree_len itself is a power of 2, so we can use a bitmasking // trick instead of an actual remainder operation. (Note that if the caller // consistently passes power-of-2 inputs of the same size, as is hopefully // typical, this loop condition will always fail, and subtree_len will // always be the full length of the input.) // // An aside: We don't have to shrink subtree_len quite this much. For // example, if count_so_far is 1, we could pass 2 chunks to // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still // get the right answer in the end, and we might get to use 2-way SIMD // parallelism. The problem with this optimization, is that it gets us // stuck always hashing 2 chunks. The total number of chunks will remain // odd, and we'll never graduate to higher degrees of parallelism. See // https://github.com/BLAKE3-team/BLAKE3/issues/69. while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) { subtree_len /= 2; } // The shrunken subtree_len might now be 1 chunk long. If so, hash that one // chunk by itself. Otherwise, compress the subtree into a pair of CVs. uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN; if (subtree_len <= BLAKE3_CHUNK_LEN) { blake3_chunk_state chunk_state; chunk_state_init(&chunk_state, self->key, self->chunk.flags); chunk_state.chunk_counter = self->chunk.chunk_counter; chunk_state_update(&chunk_state, input_bytes, subtree_len); output_t output = chunk_state_output(&chunk_state); uint8_t cv[BLAKE3_OUT_LEN]; output_chaining_value(&output, cv); hasher_push_cv(self, cv, chunk_state.chunk_counter); } else { // This is the high-performance happy path, though getting here depends // on the caller giving us a long enough input. uint8_t cv_pair[2 * BLAKE3_OUT_LEN]; compress_subtree_to_parent_node(input_bytes, subtree_len, self->key, self->chunk.chunk_counter, self->chunk.flags, cv_pair); hasher_push_cv(self, cv_pair, self->chunk.chunk_counter); hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN], self->chunk.chunk_counter + (subtree_chunks / 2)); } self->chunk.chunk_counter += subtree_chunks; input_bytes += subtree_len; input_len -= subtree_len; } // If there's any remaining input less than a full chunk, add it to the chunk // state. In that case, also do a final merge loop to make sure the subtree // stack doesn't contain any unmerged pairs. The remaining input means we // know these merges are non-root. This merge loop isn't strictly necessary // here, because hasher_push_chunk_cv already does its own merge loop, but it // simplifies blake3_hasher_finalize below. if (input_len > 0) { chunk_state_update(&self->chunk, input_bytes, input_len); hasher_merge_cv_stack(self, self->chunk.chunk_counter); } } void blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out, size_t out_len) { blake3_hasher_finalize_seek(self, 0, out, out_len); } void blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek, uint8_t *out, size_t out_len) { // Explicitly checking for zero avoids causing UB by passing a null pointer // to memcpy. This comes up in practice with things like: // std::vector v; // blake3_hasher_finalize(&hasher, v.data(), v.size()); if (out_len == 0) { return; } // If the subtree stack is empty, then the current chunk is the root. if (self->cv_stack_len == 0) { output_t output = chunk_state_output(&self->chunk); output_root_bytes(&output, seek, out, out_len); return; } // If there are any bytes in the chunk state, finalize that chunk and do a // roll-up merge between that chunk hash and every subtree in the stack. In // this case, the extra merge loop at the end of blake3_hasher_update // guarantees that none of the subtrees in the stack need to be merged with // each other first. Otherwise, if there are no bytes in the chunk state, // then the top of the stack is a chunk hash, and we start the merge from // that. output_t output; size_t cvs_remaining; if (chunk_state_len(&self->chunk) > 0) { cvs_remaining = self->cv_stack_len; output = chunk_state_output(&self->chunk); } else { // There are always at least 2 CVs in the stack in this case. cvs_remaining = self->cv_stack_len - 2; output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key, self->chunk.flags); } while (cvs_remaining > 0) { cvs_remaining -= 1; uint8_t parent_block[BLAKE3_BLOCK_LEN]; memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32); output_chaining_value(&output, &parent_block[32]); output = parent_output(parent_block, self->key, self->chunk.flags); } output_root_bytes(&output, seek, out, out_len); }